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       1  INTRODUCTION 

The term ‘characterisation’ will be used to describe methods of collection and interpretation of the 

physical attributes of the joints and other discontinuities, in other words those which control their 

mechanical and hydraulic properties, and the behaviour of jointed rock as an engineering medium. Rock 

discontinuities vary widely in terms of their origin (joints, bedding, foliation, faults/shears, etc.) and 

associated physical characteristics. They can be very undulating, rough or extremely planar and smooth, 

tightly interlocked or open, filled with soft, soil-type inclusions or healed with hard materials. Therefore, 

when loaded in compression or shear, they exhibit large differences in the normal and shear deformability 

and strength, resulting in surface separation and therefore permeability. Such variability calls for 

innovative, objective and practical methods of joint characterisation for engineering purposes. The output 

must be quantitative and meaningful and the cost kept at reasonable levels. The practical methods to be 

described will be biased in the direction of quantifying the non-linear shear, deformation and 

permeability behaviour of joints, based on the Barton-Bandis (BB) rock engineering modelling concepts. 

The term ‘modelling’ will be used to introduce the basic stress-displacement-dilation behaviour of joints 

in shear, and the basic stress-closure behaviour when joints are compressed by increased normal stress. 

These are the basic elements of the (non-linear) behaviour, which are used when modelling the two- or 

three-dimensional behaviour of a jointed rock mass. They are the basic BB (Barton-Bandis) components of 

any UDEC-BB distinct element numerical model (used commercially and for research since 1985). The BB 

approach can also be used to determine improved MC (Mohr-Coulomb) strength components for a 3DEC-

MC three-dimensional distinct element numerical model. In other words for acquiring input at the 

appropriate levels of effective stress, prior to BB introduction into 3DEC, believed to be a project 

underway. Due to space limitations, constant stiffness BB behaviour of rock joints is given elsewhere. 

 

Keywords: joint characterization, roughness, wall-strength, peak strength, shear stiffness, normal stiffness, 

physical and hydraulic apertures (Quantification of parameters: JRC, JCS, φr , Ks, Kn, E and e) 

2 BASIC GEOMETRIC INPUT FOR ROCK MASS REPRESENTATION IN MODELS 

ISRM has recommended the following key attributes for the characterisation of rock discontinuities:  
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(a) Physical attributes affecting the engineering properties of discontinuities:  

1) Roughness  

2) Strength of rock at the discontinuity surfaces  

3) Angles of basic and residual friction  

4) Aperture of discontinuities  

5) Infilling material  

 

(b) Geometrical attributes defining the spatial configuration of discontinuities:  

1) Joint orientations (dip & dip direction)  

2) Spacing  

3) Number of sets  

4) Block shape and size  

5) Joint continuity 

 
In this chapter we will be addressing the characterization and quantification of the first ‘smaller-scale’ set 

(a) of Physical attributes in detail, and the effect each of them can have on the physical behaviour of the 

joints. We can use a photograph to introduce (b) Geometrical Attributes without going into further detail 

about these larger-scale structural-geology attributes of rock masses, which determine modelled 

geometries with UDEC-MC, UDEC-BB and 3DEC-MC. (MC Mohr-Coulomb, BB Barton-Bandis). 

 

  

 

Figure 1 Characteristics of joint sets as observed in a Finnish open pit and at the portal of an old 

unsupported road tunnel in Norway (100 years prior to Q-system tunnel support guidance). We see 

variable orientation (dip and dip direction), variable spacing within each set, variable numbers of joint sets 

(two to three), variable block shape and size, and variable joint continuity (e.g. 1-10m and discontinuous). 
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In order to arrive at a credible final output, namely the mechanical properties of discontinuities, the 

‘characterisation’ of the physical and geometrical attributes must adopt integrated approaches by 

combining observations, measurements and judgment. 

 

Observations will cater for the intrinsic heterogeneity and variability and thus contribute to reducing 

‘sampling bias’. Measurement of the physical and geometrical attributes requires credible techniques that 

can be applied in the field and/ or in the laboratory in a standardised manner. Several techniques are 

available including index tests, laboratory tests and in situ tests. Index tests are simple, empirical 

methods, amenable to standardization and easily executable for measuring fundamental ‘indices’, such as 

friction, rock strength, roughness, etc.  Laboratory tests (e.g. direct shear, uniaxial compression) are useful 

for confirmation of engineering properties predicted by index testing, notably when special types of 

discontinuities are involved (e.g. infilled or intensely pre-sheared). In situ tests may also be used for 

deriving parameters at representative geometrical scales and to study behavioural trends of particular 

critical discontinuity types, such as major weak features (e.g. fault zone materials).  

 

Geometrical and other factors such as continuity, block size, history of displacements, etc. need to be 

taken into account when interpreting the characterisation data in order to derive engineering properties. 

It is at that stage of characterisation that expert engineering judgment acquires a special role. 

3 CHARACTERIZATION AND QUANTIFICATION OF JOINT PROPERTIES 

A convenient assembly of the recommended index tests needed for applying the Barton-Bandis BB model 

is shown in Figure 2. These tests, including the direct shear tests, were used by Barton and Choubey, 1977 

in their comprehensive research and developments using 130 joint samples collected from road cuttings 

near Oslo, Norway. The sketches were developed in the form of coloured ‘over-heads’ for lecture courses, 

and bought together in one figure in Barton, 1999.  

Fortunately for the more rapid development of the BB model, Bandis, 1980 used the same methods for 

characterization and description of his numerous joint replicas (used in his scale-effect studies) and for his 

natural joint samples (used for his normal stiffness studies). The suggested parameters from Barton, 1973: 

JRC, JCS and φb were expanded to include the potentially lower φr for weathered joints because of the 

sometimes slightly weathered joints tested by Barton and Choubey, 1977. Following Bandis, 1980 Ph.D. 

studies, the combined techniques for modelling both shear and normal loading were published in Bandis 

et al. 1981 (mostly concerning shear behavior and scale effects) and in Bandis et al. 1983 (most 

concerning normal stiffness behavior). In Figure 2 histograms can be seen for (suggested) presentation of 

variability within each index test. For example JRC is given with subscripts JRC0  and JRCn. These represent 

nominal 100mm long or larger-scale values, which might be obtained by the a/L method of Barton, 1981. 

This is also shown in Figure 2, and expanded upon later in this chapter. 
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Figure 2 Four columns of diagrams showing 1. direct shear tests principles (Note: apply shear force T ‘in-

line’ to avoid creating a moment), 2. tilt test principles, 3. Schmidt hammer test principles, and 4. 

roughness recording principles. Each of these simple methods are described in the following paragraphs. 

Since direct shear tests may be performed as part of the site characterization studies, some short notes 

are provided, which may or may not perfectly conform with suggested methods. However they are the 

result of collectively performing many hundreds of direct shear tests on rock joints, rock joint replicas, or 

rougher tension fractures. 

1. Direct shear tests:  The joint samples may consist of (cored) nearly circular or elliptical, or (sawn) 

square or rectangular samples, i.e. prepared from core, or from sawn blocks recovered from adits 

or from freshly excavated rock slopes. A strong recommendation is to recover sufficient numbers 

of representative samples of each joint set of interest, so that multiple testing of the same 

sample is avoided. The latter tends to ‘rotate’ the shear strength envelope, when tests at low 

stress are succeeded by tests at higher stress. An (even more) artificial ‘cohesion’ intercept is 

thereby obtained. (See discussion in Barton, 2014). Shear stress-displacement curves and 

dilation-displacement curves are plotted, and may look similar to the sketches in panel 1.2. The 

third Panel 1.3 shows ‘peak’ and ultimate’ strength envelopes which will tend to be curved if 

joints have significant roughness and/or if a significant range of normal stress is applied, such as 

0.5 to 5 MPa, or 1 to 10 MPa. Note that residual strength envelopes are highly unlikely to be 

reached with just a few millimeters of joint shearing (≈ 1% x L may be needed to reach peak, or 
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1mm in the case of a 100mm long sample. This 1% reduces when testing longer samples). A 

method of estimating an approximate residual strength based on Schmidt-hammer tests is shown 

in Figure 2 (combine Panel 3.2 with Panel 2.2). It will be found that φr < φb , usually by several 

degrees if joint weathering (r < R) is significant. 

 

2. Tilt tests: It is believed that Barton and Choubey, 1977 were the first to apply tilt tests in a 

‘scientific’ way to determine specific ‘designer-friendly’ joint strength properties, since they 

showed how both φb and JRC could be obtained from tilt tests. Because a sound empirical non-

linear shear strength criterion is used (Panel 2.2), the tilt test result from gravity shear-and-

normal loading at a failure stress as low as 0,001MPa can be extrapolated by three to four orders 

of magnitude higher normal stress. We will of course reproduce the ‘standard set’ of 100mm JRC 

profiles very soon, but in the meantime emphasize that many who concentrate (in the last 

decades) on the exclusive use of 3D-laser profiling of roughness, may be missing some important 

details of shear behavior by never performing (3D) tilt tests and ‘always’ criticizing 2D roughness 

profiles. (The latter were always intended just as a rough guide, and some 400 could have been 

selected to represent the typical (direct shear tested) JRC values of Barton and Choubey, 1977, 

since 3 x 130 tilt tests were performed and 3 x 130 2D profiles were recorded. (The 

representative JRC values were however selected from among the single DST tests on the 

same130 joint samples). Panel 2.1 represents the tilt test principle for testing the natural joints 

for back-calculating JRC, shown in Panel 2.2. Panel 2.1 also shows tilt tests on core sticks (these 

could be sawn blocks). The way in which the basic friction angle φb is utilized is shown in Panel 

2.2. In the case of using artificially ‘prepared’ surfaces for φb it is important to avoid using 

‘polished’ samples due to slow drilling or slow diamond sawing. Brief sand-blasting should be 

performed to expose the mineralogy, without adding roughness. If ridges are present across 

either type of sample then grinding away of the ridges followed by sand-blasting should be 

sufficient. Values of φb tend mostly to be in the range 25° to 35°, and most frequently 28° to 32°. 

However if a single rock type like chalk or limestone is of interest, values may be consistently 

close to the upper values. Please be aware that ‘so-called φb values’ obtained by subtracting 

dilation angles from peak shear strength may be (dangerously) over-estimated, due to neglect of 

the asperity failure component as (which is of similar magnitude to the dilation angle). This will be 

illustrated later. 

 

3. Schmidt-hammer tests (for JCS). Panel 3.1 illustrates, in diagrammatic format, the use of Schmidt-

hammer rebounds (respectively r or R) when measuring on natural joint surfaces, and when 

measuring on artificially ‘prepared’ surfaces (core-sticks or sawn blocks). In each case, a flat 

concrete laboratory floor and clamping to a steel ‘V-block’ base is advised, so that the impact and 
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rebound are not affected by unwanted ‘rocking’ or other movements. However, to be on the safe 

side and in order not to have the effect of crushing a loose mineral grain, the mean of the top 

50% of measurements is found to be superior to the normally recommended mean values. This 

simple technique is shown in Panel 3.2. Artificially low vales are thereby removed as unwanted 

‘noise’, and the remaining 50% tend to be more uniform and therefore more representative. So 

finally, the mean values of r50  and R50 are used to represent, respectively, the JCS (joint wall 

compressive strength) and an approximate measure of UCS (unconfined compression strength). 

Of course more direct measurement of the latter are usually a part of the site investigation. 

 

4. Roughness measurement (for JRC). Panel 4.1 of Figure 2 illustrates the two principal methods for 

recording joint roughness, and estimating JRC. Panel 4.2 shows in symbolic format, the a/L 

method and the JRC-profile matching method. A nearly full-scale set of roughness profiles of 

characteristic 100mm length,  with associated JRC0 estimates, from nearly smooth-planar JRC = 0 

to 2, up to extremely rough, undulating JRC = 18 to 20, are reproduced on the next page for ready 

reference. However tilt testing where possible, or amplitude/length  (= a/L) measurements are 

recommended, in addition to profile ‘matching’, because the latter is inevitably subjective. This 

was pointed out not only by the first authors, but probably by each of the researchers responsible 

for a reported 49 equations for JRC (seen tabulated in a 2016 paper review). None were 

interested in performing tilt tests it seems. Figure 3 reproduces the original roughness profile 

from Barton and Choubey, 1977. 

 
 

 

 

 

Figure 3  The results of characterization of JRC and JCS and testing (tilt test and DST) one hundred and 

thirty rock joint samples. Note that the ‘i-value’ of Patton, 1966 is replaced by a stress-dependent 

logarithmic function incorporating variable (and scale-dependent) roughness, and the ratio of normal 

stress and joint wall strength, the latter also scale-dependent. The strength envelope is non-linear. 
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Figure 4 The 100mm long roughness profiles were associated in each case with back-calculated JRC 

values in the given range, based on direct shear tests of the individual joint samples. In each case, 

three roughness profiles were recorded on each sample, and one was chosen as representative. In each 

case, three tilt tests were performed on each sample, so as to predict the DST. Barton and Choubey, 

1977.  
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Figure 5 From top-left: a) The ten joint samples profiled in Figure 3. b) During core-logging (for Q-

parameters) JRC is estimated using the profilometer and the a/L method (note magnets holding steel rule). 

c) One of the tilt-tests performed by Barton and Choubey, 1977. d) An electric-motor driven tilt test of φb 

using core-sticks (no ridges, no polish). e) Tilt test on large core showing Schmidt hammer and roughness-

profiling comb. f) Roughness recording at 150mm and 1300mm scales, on fractured 1m3 blocks, prior to 

1.3 ton tilt-tests, followed by biaxial flat-jack shear test (Bakhtar and Barton, 1984).   

A practical and economic design for a tilt-test apparatus is shown in Figure 6. This was developed 

while the first author worked in TerraTek, with various joint characterization and testing projects. 

Today the company is owned by Schlumberger, and one may guess that this petroleum service 
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company is less oriented for fracture characterization of reservoir rocks due to scarcer sources of 

samples, and the unfortunate tendency (from a rock mechanics point of view) of sectioning core, 

thereby losing the possibility of testing circular or elliptical samples. Furthermore, there is the 

remarkable tendency of those practicing reservoir geomechanics of only using linear friction 

coefficients (from Byerlee, 1978) and linear Mohr-Coulomb strength envelopes for the matrix rock. 

Both methods have severe limitations in terms of interpreting reservoir behavior because effective 

stresses rise by tens of MPa with increased production. 

  

Figure 6  An economic tilt test apparatus, which 
consists of a triangular steel base-plate with three 
levelling screws, a circular spirit level, a tilt-angle 
recorder, a heavy 1:200 reduction gear (with rotating 
handle), and a core-shaped or V-notch shaped ‘tilt-
table’ which must be screwed to the gear axle at one 
end, so that the turning moment remains anti-
clockwise (when viewed from front) throughout the tilt 
test. (One must avoid vibration occurring due to ‘gear-
slack’ just before sliding occurs, as then the correct tilt 
angle will be missed).  

 

             

Figure 7 The Schmidt L-hammer is a useful way to register the degree of weathering in a rock joint. This 
method was used long ago by Richards, 1975 for registering the weathering grades (and low residual 
friction angles) of joints in sandstones, where values as low as φr = 12° and r as low as 15 were recorded. 
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  Figure 7 illustrates the way that the residual friction angle (φr) correlates approximately with the Schmidt 

hammer rebound (r). It is estimated from the empirical equation shown in Figure 2 (bottom of Panel 2.2) 

The reduction from (R) to (r) due to weathering effects was illustrated in Figure 2 (Panel 3.2). As a result of 

the three components JRC, JCS and φr we see the non-linearity sketched in Figure 8, in contrast to Mohr 

Coulomb linearity, or Patton, 1966 bi-linearity.  

 

Figure 8 Diagrams and equations representing the most common shear strength criteria for rock joints: 

Mohr-Coulomb, Patton, 1966 and Barton and Choubey, 1977.  

When block-size is taken into account, and we move beyond nominal laboratory L0 = 100mm samples 

(where JRC0 and JCS0  apply), then input data applies to block-size Ln (the mean cross-joint spacing of each 

set) and we will refer to JRCn and JCSn . It is then correct to refer to the Barton-Bandis criterion, as scale 

effects are accounted for following the block-size scale effect adjustments suggested by Bandis et al. 

1981. Note the red arrow in Figure 8, next to the actually non-existing cohesion (c) which is an artifact of 

the M-C linearity assumed. Only joints with steep steps, such as cross-joints, have real cohesion. When 

testing at very low normal stress (see small blue arrow) the friction angle may become very large, and the 

‘limit’ is the tilt test, commonly performed at 1000 to 10,000 times lower stress than in rock engineering 

designs. Since envelope curvature is correct, a good estimate of engineering performance is achieved, as 

verified in Barton and Choubey, 1977 who studied and proved the validity of the normal stress ‘jump’ 

from 0.001 MPa to 1 MPa (approx.) This is also discussed in Barton, 1999, where the important topic of 

stress transformation errors is introduced: as applying to 45° loaded-direction  shear test apparatuses. 
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Figure 9 The DST measured peak shear strengths of the 130 joint samples, whose JRC, JCS and φr   statistics 

were summarized in Figure 3. The symbolic tilt-test block is designed to emphasize that the shear strength 

of rock joints can be estimated from index tests carried out on recovered core or blocks of rock, if the latter 

are freshly exposed in e.g. rock cuttings or open-pit benches. 3D laser and long equations are not needed. 

The direct shear test results for joints recovered from the seven different rock types are shown in Figure 

9. Deliberate choice of highest and lowest JRC, JCS and φr values allow the curved upper-most envelope 

and the lowest, almost linear envelope to be drawn. In the latter JRC is only 0.5 (‘smooth, planar’) 

compared to JRC = 16.9 (‘rough, undulating’) for the upper envelope. The mean results of the three 

parameters (JRC = 8.9, JCS = 92 MPa and φr  = 28°, are shown by the central envelope.  

Regrettably in geomechanics for petroleum, there is an almost universal tendency (oil companies on both 

sides of the Atlantic and in the Middle East) to use the so-called ‘Byerlee law’, in which a (linear) friction 

coefficient of 0.85 (φ = 40.4°) is assumed to represent ‘critically stressed’ fracture sets or joint sets. 

Byerlee was clearly not happy with three joint parameters (JRC, JCS etc), and generations of (Stanford) 

researchers and professors have followed his simple (and sometimes very inaccurate) linear and limited 

friction coefficient approach. The need for more accuracy and acknowledgement of the actual important 

role of rock type and roughness are nicely emphasized by the following classic μDEC (pre-UDEC) result 

from Peter Cundall and a former Ph.D. student Mike Voegele. Only the most stable case shown in Figure 

10 corresponds to the Byerlee ‘law’. The linear ‘belief’ has been further spread by Zoback, 2007. Cross-

Atlantic research (on non-linear description for rock joints) does not seem to be popular in geomechanics, 

despite 65% of remaining petroleum in naturally fractured reservoirs (NFR) with guaranteed non-linear 

behavior. See Barton, 2015 and Barton, 2016 for further discussion. 
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Figure 10 The importance of variable frictional angles on rock slope stability (and indeed on slope 

deformation characteristics) are nicely illustrated by these early distinct element (μDEC) models which was 

a method developed by Cundall, and culminated in UDEC (UDEC-MC and UDEC-BB) and 3DEC-MC. These 

four slope models are from Cundall et al. 1977. The given friction angles applied to all joints in these cases. 

Today we can model deformable blocks (in UDEC) and differentiate the (possible) non-linear response of 

the different joint sets (the latter with UDEC-BB, commercially available since 1985). 

4   QUANTIFICATION OF JOINT PROPERTIES AT LARGER SCALE 

There have been various stages in the profession’s acknowledgement of the need for scale-effect 

adjustment concerning the shear strength of rock joints. In particular, the studies at different scales by 

Pratt et al. 1977 (using in situ tests), by Barton and Choubey, 1977 (see Figure 11), by Barton and 

Hansteen, 1979 (using studies with different block sizes in 250, 1,000 and 4,000 tension-fracture block-

assemblies) and especially by Bandis, 1980 and Bandis et al. 1981 (from work with different size replicas 

of rock joints), leaves one in no doubt about the importance of scale effects. We will also see tilt test 

results and roughness profiling in relation to typical large-scale JRCn values, from 130 cm long fractures 

tested by Bakhtar and Barton, 1984. JRCn is lower than JRC0, and as we shall see, this has a significant 

effect on shear strength-displacement behaviour. 
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Figure 11 Scale-effect investigation with tilt-tests of a 45 cm long joint in granite, followed by individual tilt 

tests on eighteen component samples from the same joint, sheared in the same direction. The JRC value 

increased from 5.2 to 8.8, and eight of the eighteen samples now had to be push-tested as ‘so rough’. 

Shear strength is lower for the largest sample, and the displacement to reach peak (δpeak) is also larger. 



14 
 

 

 

 

Figure 12 Some of the scale-effect studies of Bandis, 1980 which were journal-reported in Bandis et al. 

1981. Replicas of natural rock joints could be reproduced many times, and therefore could be tested at 

different scales. This particular set shows some specific changes in contact areas, reduced JRC and 

increased δpeak. 

The joint replica tests performed by Bandis, 1980, and parallel sets of normal-closure tests on natural rock 

joints (see later) were each described by the JRC, JCS and φr parameters developed in Norway in the 

preceding years. An important summary of the scale-effects observed by Bandis is given in Figure 13. Here 

we see use of the asperity failure components SA of Barton, 1971, which may be of the same (angular) 

magnitude as the peak dilation angle. It is not correct to assume that this component is zero, and by 

subtracting the dilation from peak strength to assume one has reached ‘basic’ (flat surface) friction angle. 



15 
 

 

Figure 13 The principal scale-dependent components of the shear strength of rock joints as summarized by 

Bandis, 1980 and Bandis et al.1981. Note that SA has almost the same magnitude as the peak dilation 

angle, at various scales, so subtracting dilation from peak strength leaves two components remaining, not 

φb as assumed by Hencher on various occasions. 

 

Figure 14 The angular components of shear strength for a non-planar rock joint. Barton, 1971. Note that 

the presence and influence of dilation dn requires adjustment of the classic stress-transformation equations 

for all shearing-and-dilating geotechnical materials. (See Bakhtar and Barton, 1984 and Barton, 2006). 

This important topic will be discussed later in this chapter. 

The scale effects illustrated in Figure 13 are the ‘product’ of individual scale effects on JRC and JCS, and as 

a result of combining the results of  Barton and Choubey, 1977, Barton and Hansteen, 1979 and Bandis 

1980, the following suggestions for reductions of JRC and JCS with increasing block size were given by 

Bandis et al. 1981. The following equations were recommended: 

JRCn ≈ JRCo [ Ln/Lo ] -0.02 JRC
o                                                                                                                        (4) 

JCSn  ≈ JCSo  [ Ln/Lo ] -0.03 JRC
o                                                                                                         (5) 
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Figure 15 When representing the shear strength of rock masses with the parameters JRC and JCS, it is 

necessary to consider the mean spacing of joints crossing the joint set of primary interest, in order to apply 

the scaling equations 4 and 5 of relevance to this block size (say 2 m). The spacing of joints crossing the 

joint set of secondary interest (say 3m) will define the mean block size for the secondary set. 

The tests shown in Figures 16 and 17 were performed by Barton on tension-fractured brittle model 

materials, using a double-bladed guillotine for generating intersecting sets of equally-spaced fractures. 

The tests (which were pre-UDEC, and therefore pre-UDEC-BB) were performed prior to large-span cavern 

modelling (for underground nuclear power plant purposes), using various fracture configurations and 

stress levels. Although the deformation moduli of the smallest-block models were lowest, the greater 

freedom for block rotation in these cases gave them higher shear strength, and induced kink-band 

formation.  

 

Figure 16 Biaxial shear strength testing of (guillotine-tension) fractured block assemblies consisting of 250, 

1,000 and 4,000 distinct blocks. The first set of parallel fractures were continuous, while the second set 

crossing the first had potential cohesion, due to the steep steps created. Barton and Hansteen, 1979. 
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Figure 17  The reductions in block size shown symbolically here, had a consistent tendency to cause higher 

shear strength. However, in the case of the smallest blocks, whether with 60°/60° or 45°/45° fracture 

orientation, there was a remarkable ‘linearization’ of the stress-strain diagrams. Note the strong increases 

in the ‘lateral expansion coefficient’ (jointed Poisson’s ratio) due to joint shearing (and violation of 

continuum behavior). Barton and Hansteen, 1979. 

A further study of scale-effects was conducted by Bakhtar and Barton, 1984 using samples of the type 

illustrated in Figure 5d and Figure 18. These studies are incorporated in the next topic as they also gave 

insight into the need for a re-think about stress-transformation (from principle stresses σ1 and σ2 onto an 

inclined plane, in the form of the geotechnically important shear stress (τ) and normal stress (σn). 

5 STRESS TRANSFORMATION, JRC (mobilized) AND SHEAR STIFFNESS 

An important subject that goes beyond the more common distinction that we make between constant 

normal stress and ‘constant’ normal stiffness shear testing of rock joints (the latter actually not constant 

in reality), is the correct transformation of stress. The subject of concern is the transformation of stress 

from a principal (2D) stress state of 1 and 2 to an inclined joint, fault or failure plane, to derive the 

commonly required shear and normal stress components τ and n. If the surface onto which stress is to be 

transformed does not dilate, which might be the case with a fault at residual strength, or for a thickly clay-

filled discontinuity, then the assumption of co-axial or co-planar stress and strain is no doubt more valid. 

If on the other hand dilation is involved (as in Figure 14), then stress and strain are no longer co-axial. In 

fact the plane onto which stress is to be transferred should be an imaginary plane since continuity is 

assumed. Non-planar rock joints, and failure planes through dense sand, or through over-consolidated 

clay, or through compacted rockfill, are neither imaginary nor are they non-dilatant in nature. This 
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problem nearly caused a rock mechanics related injury, when Bakhtar and Barton, 1984 were attempting 

to biaxially shear a series of ten 1 m3  samples, applying shear and normal stress to the 130 cm long 

diagonal fractures (which were without weathering effects). 

  

  

 

Figure 18. Sample loading test set-up and tilt testing of 1 m3 samples of rock, hydrostone and concrete by 

TerraTek colleague Khosrow Bakhtar in the early 1980’s (in a pre-Schlumberger era). Note the tilt testing 

(at 1 m3 scale), lowering a lightly clamped sample into a test frame, LVDT instrumentation, and a (rare) 

sheared sample of an undulating fracture in sandstone. Bakhtar and Barton, 1984. 
 

The experimental set-up and a tilt test are shown in Figure 18. The sample preparation was unusual 

because of principal stress (1) controlled-speed-tension-fracturing: (see triangular flat-jacks in top-left 

photo). This allowed fractures to be formed in a controlled manner, with less roughness than typical for 

(laboratory-formed) tension fractures. Figures 19 and 20 show the stress application and related stress 

transformation assumptions, presented in three stages. 
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Figure 19  The TerraTek 1m3 ‘cube-machine’ biaxial (or poly-axial) loading facility.  (This facility is now 

owned by Schlumberger). The roughness profiles were obtained by the simple techniques shown in Figure 

5d. The JRCn values were obtained by back-analising the large-scale (1300mm long) tilt tests which were 

performed on the 1 m3 diagonally-fractured samples. Bakhtar and Barton, 1984 

The rock mechanics near-injury occurred when a (1-applying) flat-jack burst at 28 MPa, damaging 

pictures on the laboratory walls and nearly injuring the writer who was approaching to see what the 

problem was. The sample illustrated in Figure 18 (with the photographer’s shoes, pre-test stage) was 

transformed into ejected slabs, and ejected high-pressure oil, as a result of the explosive flat-jack burst. 

These 1.3m long tension fractures gave tilt angles varying from 52° to 70°, and large-scale (Ln = 1.3 m) 

joint roughness coefficients (JRCn) varying from  4.2 to 10.7. A clear scale effect was exhibited in relation 

to the 100mm long JRC0 profiles shown in Figure 4.  

The conventional stress transformation equations 6 and 7, and the dilation-corrected equations 8 and 9 

are given below. It will be noted that a mobilized dilation angle is needed. A dimensionless model for 

mobilization of roughness (JRCmob) is used, and is seen to have wider application in the BB modelling. 
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Figure 20 The assumed stress transformation components. In order to minimize boundary friction, 

molybdenum-greased double-teflon sheets (virtually fluid boundaries) and pairs of stainless-steel, 0 to 30 

MPa flatjacks were used on all four sides of the 1 m3 blocks.  it was assumed at first that failure was ‘long 

overdue’ when apparently reaching the location #1 in the right-hand diagram. In fact we were only just 

approaching the strength envelope, at location #3, so shear failure could not yet have occurred. Bakhtar 

and Barton, 1984.  
 

Angle  is the acute angle between the principal stress 1 and the joint or failure plane. The peak dilation 

angle and mobilized dilation angle can be written as: 

0

n n

1
(peak) (peak) log( / )

2
d JRC JCS                 (10) 

An estimate of the mobilized dilation angle dn (mob) for adding to the joint angle , is as follows: 

0

n n

1
(mob) (mob) log( / )

2
d JRC JCS                (11)  

JRC(mob) is an important component of the Barton-Bandis joint behavior criterion. It is shown in Figure 21. 

It was developed by Barton, 1982 while analyzing the results of TerraTek’s ONWI-funded 8m3 in situ 

heated HTM (hydro-thermo-mechanical) block test, which was performed by colleagues Hardin et al. 

1982, at the Colorado School of Mines experimental mine.  

The JRC(mob) concept illustrated in Figure 21 has the effect of ‘compressing’ a series of shear-displacement 

curves obtained from DST at widely different normal stresses (e.g. see Panel #1.2 in Figure 2) into a 

narrow band of behavior. Conversely, from the single JRCmob /JRCpeak  versus displacement δ/ δpeak curve 

shown in Figure 21 we can generate (by hand if necessary) shear stress-displacement (and dilation-

displacement) curves for widely different input data (JRC, JCS, φr) and widely different boundary (stress) 

conditions. 
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Figure 21  The dimensionless JRC (mob) concept was designed to match the details of joint or fracture 

behavior during direct shear testing. An example of this is shown in Figure 22.  Note the different level of 

information compared to one ‘peak’ friction coefficient μ (top point of figure only) as used in petroleum 

geomechanics. Barton, 1982. 

  

Figure 22 Generation of shear stress-displacement curves for four types of rock joint, as DST tested by 

Bandis, 1980. The ‘numerical model’ was generated by hand using the JRC(mob)  concept, Figure 21.  Barton, 

1982. 
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Figure 23 Generation of shear stress-displacement curves for one type of rock joint, as DST tested by 

Bandis, 1980 at three different levels of normal stress. The ‘numerical model’ was generated by hand. 

 

Figures 22 and 23 demonstrate how the JRC(mob) concept is used to generate stress-displacement (and also 

dilation displacement) diagrams, for joints of any roughness, or any normal stress level. These were 

readily generated by hand (Barton, 1982) i.e. demonstrating the simplicity of the concept, devoid of 

‘black-box’ software needs, as common in today’s commercial software. 

Since we now have a simple method of generating shear stress-displacement (and dilation-displacement) 

curves, we can take the method one stage further and generate shear stress-displacement (and dilation-

displacement) curves for rock joints (or jointed blocks of rock) at various scales, using the JRC and JCS 

scaling equations (4 and 5) listed earlier, below Figure 14. In fact in the next section, considering joint 

apertures and joint conductivity, we will also be able to see how shearing and dilation affect the 

conductivity. We are then close to seeing the coupled nature of the Barton-Bandis model, which can be 

used for modelling rock mass deformation (i.e caused by tunnelling) and the joint-related flows (in 2D) 

towards the same tunnel.  

We may experience that the set of joints suffering (slight) shearing and dilation may not be the same set 

that conducts most flow to the tunnel. It all depends on the magnitudes of JRC, JCS, φr and on the 

magnitudes of the initial hydraulic apertures prior to deformation. In the BB model we convert the 

dilation-induced aperture (E + ΔE) into the less altered e +Δe hydraulic aperture, using JRC0 or JRC(mob) 

depending on whether opening / closing or shear/goudge production is occurring. This is described later 

in this chapter. 
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Figure 24 Generating shear-displacement-dilation behaviour, for three different block sizes. Barton, 1982. 

Note the inset showing the scaling assumptions from Bandis et al. 1981 equations 4 and 5. It will 

immediately be noted that, as experienced in practice, there is an increase in δpeak as block size increases. 

Since there is also a reduction in peak shear strength, the peak shear stiffness Ks suffers a double scale-

effect, and is lower than the values most numerical modellers are familiar with. This is shown later. 

 

When estimating the values of JRCn of most relevance to the given joint sets forming the rock mass 

(example block-sizes of 1m and 2m are shown in Figure 24) it is helpful to utilize the a/L method, which 

was sketched at small scale in Panels 4.1 and 4.2 of Figure 2. In Figure 25 this simple guide to scale effects 

is shown at a scale which could be used in practice. The black circles show imaginary a/L data that might  
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Figure 25 An illustration of the a/L method for estimating the large-scale JRCn value. Note that at L = 10 cm 

scale JRC0 ≈ 400 a/L, while at L = 1m scale, JRCn ≈ 450 a/L. A field-logging sheet is given on the right, with 

interpolation down to 5cm scale for use when core-logging and needing to estimate JRC0 .  Barton, 1981. 

 

have been collected by measuring convenient exposures of the joint set in question. In the case illustrated 

there is most data at L = 0.2m and at L = 0.5 m scales. There is only one data point for the imaginary mean 

block size of 2m. Nevertheless we must make the conservative extrapolation and use an estimate of JRCn 

= 3 in this case, and check from equation 4 if this is consistent with the small scale (L = 15 to 20 cm) JRC0  

estimates of approx. 5 to 10 seen down to the left-hand side of Figure 25. The final value will be a 

question of engineering judgement, and may also include a look at the 130cm long profiles in Figure 19. 

As noted in the figure caption of Figure 24, and in the inset to this same figure, an estimate of δpeak is 

required in order to derive appropriate shear stress-displacement (and dilation-displacement) curves. A 

collection of some 600 DST results for block sizes from 10 cm to more than 3m assembled in Barton, 1982 

indicated a rather wide spread of data for  δpeak . The statistics suggested the following formula as a 

workable approximation: 

 δpeak ≈ L/500 (JRC/L)0.33                                                                                                                                                (12) 

where δpeak is in meters and L is the block-size in meters. 
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Examples: 

Lab. sample: L0 = 0.1m, JRC0 = 15. Equation 12 gives   δpeak  = 0.0011m or 1.1mm. 

In situ block: Ln = 1.0m, JRCn = 7.5. Equation 12 gives δpeak = 0.0039m or 3.9mm 

As summarised in the figure caption to Figure 24, the double strength and δpeak scale effect have a quite 

dramatic effect on the shear stiffness Ks. Many hundreds of DST data were assembled in Barton, 1982 and 

gave the trends shown in Figure 26 a. Data for clay-filled discontinuities, natural rock joints and model-

material joint replicas are shown. 

 

 

 

Figure 26 Left: Several hundred DST data for a variety of joints, filled-discontinuities and model-material 

replicas of joints. Note the strong scale effect, and also the approximate influence of the effective normal 

stress. Right: Predicted block-size scale and stress effects for a rough joint in hard rock, and for a smoother 

joint in weaker weathered rock. Care is needed when selecting Ks for modelling, as instruction manuals 

usually have the ratio Kn/Ks too small, even 1.0. (Kn = normal stiffness). This is incorrect. Barton, 1982. 
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In Figure 26, right-hand figure, a shear-stiffness prediction exercise is performed, using two widely 

different joint samples as a starting point. The top right-hand corner shows the parameters assumed for a 

very rough joint in hard unweathered rock (15, 150 MPa, 30°). The bottom left-hand shows the 

parameters assumed for a more planar weathered joint (5, 50 MPa, 25°). As we can see it is likely that 

shear stiffness Ks will often lie within the range of 0.1 to 1 MPa/mm for typical in situ rock block sizes and 

moderate (civil engineering) stress levels. In a later section of this chapter such low values will be 

contrasted with the much higher (x 50?) values of normal stiffness Kn, which of course emphasises the 

fundamental anisotropy of real rock masses, a property lost and forgotten in most continuum analyses, 

and even lost by some UDEC modellers. 

 

6 THE CONDUCTIVITY OF ROCK JOINTS AND THE EFFECTS OF DEFORMATION 

 

The theoretical Hagen-Poiseuille equation for the hydraulic conductivity (K) of a smooth parallel-plate, 

during laminar flow is:  

 

K = (ρg/μ) e2/12 = ge2/12ν                                                                                                (13) 

 

where K is in units of velocity (LT-1), g = gravity acceleration 981 cm/s/s (LT-2), e = equivalent parallel plate 

aperture (L), ν = coefficient of kinematic viscosity of the fluid (ν= μ/γ = viscosity / density.  

 

There are (at least) two types of joint aperture that need be considered when modelling the effect of joint 

deformation, namely the physical aperture (E) and the (theoretical) hydraulic aperture (e). A key issue is 

how to correlate the hydraulic apertures (e) to the generally larger physical apertures (E). The following 

empirical conversion formula was developed by Barton, 1982 and more widely published by Barton et al. 

1985. It is for correlating E and e in relation to roughness (JRC). This formula applies to normal closure 

effects. Olsson and Barton, 2002 extended the modelling of E and e to the case of (potentially) gouge-

producing shearing effects, in this case involving joint aperture conversion using JRC(mob). This is shown 

later, in Figure 28. 

 

E = (e JRC2.5)1/2                                                                                                                                                                                (14) 

 

Where e and E are in units of μm  

 

The kinematic viscosity ν of water is 0.01 at 20° C and ρ=1 gm/cm3 . Checking units we see that 

ν= μ/γ = viscosity / density, with units ML-1 T-1/ML-3 = L2/T). It follows that: 
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K = ge2/12ν = 8175 e2 (cm/s)                                                                                           (15) 

 

Substituting e ≈ E2/JRC0 2.5 yields the following formula for hydraulic conductivity: 

 
K ≈ 8175 [E2/JRC0

2.5] 2 x10-10 m/s                                                                                     (16) 
 
 
 

 

 

 
Figure 27  Top: Test data from which apertures e and E  (or Δe and ΔE) were measured (Barton et al. 1985, 

updated by Quadros in Barton and Quadros, 1997. Bottom: The empirical model for converting between 

these two apertures was developed in Barton, 1982 and became a part of UDEC-BB in 1985. 
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Figure 28  Coupled shear-flow tests performed by Olsson, which were summarised  in Olsson and Barton, 

2002. In this figure the modification required to account for possible gouge-production during shear is 

shown in the ‘left-hand’ curves together with some data points for CSFT with samples having JRC0 values of 

7.2, 8.8, 9.7 and 12.2. The ‘right-hand’ curves are for closure/opening modelling, as in Figure 27. This 

figure shows equation 14 (‘normal closure’) while ‘shear + gouge’ involving JRC(mob) is equation 17. 

 

Observations published by Makurat et al. 1990 indicated that CSFT (coupled shear flow tests) could cause 

gouge-production during shearing if stress levels were high in relation to JCS wall strengths. This could 

compromise both the physical (E) and hydraulic aperture (e) as interpreted from the ‘cubic law’. Logically 

speaking there would be a whole range of stress/strength ratios (high strength, low stress) in which gouge 

or damage would be minimal. In those cases, the conversion involving the empirically derived roughness 

factor JRC0
2.5 could be used in place of the Olsson and Barton equation with JRC(mob). 

 

Examples showing the (BB-predicted) effect of shearing and dilation on the joint conductivity of joints of 

variable size, or on single samples tested at varied normal stress, are shown in Figure 29. Note that for 

simplicity a ‘starting’ aperture of e = 25 μm has been assumed in each case. As we shall see in the next 

section concerning normal stiffness, this assumption of an unchanged 25 μm is likely to be erroneous 

when changes of normal stress are being modelled. Of course in the UDEC-BB program, the ‘starting’ 

apertures are calculated more correctly from the following normal stiffness behaviour. 
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Figure 29 Examples of ‘coupled’ shear-dilation-conductivity modelling with the Barton-Bandis modelling 

assumptions. When block-size variations are involved (left) the delayed dilation and therefore delayed 

conductivity change can be noted. These curves were produced in 1983 by Bakhtar using a programmable 

HP calculator and the BB equations by now assembled in Barton, 1982. ONWI and AECL funded work were 

responsible for the ‘finalization’ of the BB model prior to its programming (by Mark Christiansson of Itasca) 

into the distinct element code UDEC-BB. Barton and Bakhtar, 1983, 1987. 

 

Although unlikely to be noticed by petroleum geomechanics ‘modellers’ who are satisfied with linear 

friction coefficients and linear Mohr-Coulomb, these ‘delay’s may have influence on what should be the 

desired effect of massive hydraulic fracturing concerning the ‘accompanying’ microseismic evidence of 

shearing of natural fractures in the gas shales. This occurs at larger distances from the central elliptic 

regions of sand-propped fractures. (Barton, 2015). 

 

As a result of seismic loading involving potential reversals of shearing direction, or as a result of some 

particular rock engineering excavation sequences which might result in a reversed shearing direction, one 
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needs to consider what is likely to happen to shear strength. In Figure 30, having due consideration of 

some reversed-shear DST appearing in the literature some decades ago, Barton, 1982 formulated the 

‘degrading of roughness’ JRC related model shown in Figure 30. Progressing through some reversed cycles 

of shear would of course have the result of compromising some of the dilation-related permeability 

increases, and the ‘gouge-production’ adjustment shown in Figure 28 would obviously apply with 

successively renewed strength, due to accumulating damage and inevitable gouge-debris accumulations. 

 
 
Figure 30 Reversed shear logic based on the dimensionless JRC(mob) concept. This model was developed in 

Barton, 1982 and shows gradual degradation of shear strength. A related model for the associated 

dilation has the shape of a ‘saucer’ which is thickening at its base by decreasing amounts with each cycle 

of reversal. 

 

7 NORMAL CLOSURE OF JOINTS AND HOW TO MODEL IT 

The diagrams and equations assembled in Figure 31 show how Bandis, 1980 formulated the normal closure 

behavior of rock joints, using the JRC and JCS parameters previously detailed in Barton and Choubey, 1977 and 

now easily acquired by performing the index tests shown in Figure 2. An important detail to note about normal 

closure behavior is that every sample tested has been unloaded and disturbed during the recovery period. This 

applies more to core than block samples, if the latter are ‘banded’ with steel belts prior to transport. This of 

course also applies to samples which will be tested in shear. However in this second case one is concerned 

about behavior of millimeter scale, while the closure of tight rock joints might be measured in a few tens of 
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microns. So near-removal of the effects of sample recovery by performing load-unload cycles becomes an 

important part of the testing procedure. The arbitrary but practical assumption is made that after about three 

to four load-unload cycles there is so little change that behavior can be considered as representative of 

undisturbed behavior. 

 

 

 

 

       

 

 

 

Figure 31 Left: The hyperbolic function (equation 18a) and related equations (equations 18 b, c, d) chosen 

by Bandis, 1980 to describe the highly non-linear behavior of closing interlocked rock joints. (This method 

and numerous experimental results were published in Bandis et al. 1983). The normal stiffness expression 

is a derivative of the hyperbolic function. Right: Experimental evidence acquired by Bandis show strong 

rock-type /rock joint-type dependence, but of course some of this can be explained by rock-type-

characteristic values of JCS and JRC. 

Figure 32 shows how normal stiffness behavior is interpreted as a net deformation of the joint, by 

subtracting the intact-rock deformation from the monitored behavior of load-unload cycles (sets of three 

are shown in Figure 33) from the ‘rock-plus-joint’ overall deformation. Wide differences in behavior from 

rock type to rock type and from joint type to joint type are indicated in Figure 33. A ‘reservoir drawdown-

and-injection’ scenario is also demonstrated in Figure 33 (right-hand diagram). 

8 CASCADING PROGRESSIVE FAILURE OF JOINTED ROCK MASSES 

There is an almost ‘universal’ belief (for those not using the non-linear JRC/JCS model) that the shear 
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Figure 32 It is appropriate to ‘define’ normal 

loading behavior of rock joints by indicating the 

subtraction that has to be made of the elastic 

portion of the deformation associated with the 

intact matrix on either side of the joint. The net 

joint deformation is highly non-linear, but is 

made less so by shear deformation, or by 

mismatching (absence of inter-lock). Bandis et 

al. 1983. 

 

 

 

 
 
Figure 33 Left: Examples of normal stress-closure 
cycles for a cleavage joint in slate, for a rougher 
joint in dolerite, and bedding in hard limestone. 
Right: Using the BB-plotting routine 
programmed by Bakhtar on an HP calculator, to 
demonstrate the consolidating cycles seen on 
the left, and the assumed ‘undisturbed 
behaviour’ 4th cycle, onto which the modelled 
apertures e and E have been written at 10, 20 
and 30 MPa. A ‘reservoir drawdown and 
injection’ effect have been shaded on the 
conductivity curves. Barton et al. 1985. 
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strength of rock joints consists of cohesion and friction, and that one can add c + σn tan φ. The 

assumed cohesive strength is actually a purely ‘arithmetic’ construction due to linearized strength 

envelopes, and represents something hypothetical in relation to the reality of increasing curvature 

(friction angle plus dilation angle increase) experienced close to zero normal stress. Barton, 1971 

measured this lack of actual cohesion, even for the case of extremely rough tension fractures. The 

‘total friction’ angle may reach 80° or more when normal stress is extremely low. The ‘cohesion 

intercept’ is an arithmetic convenience, but potentially exaggerates the shear strength actually 

available. 

When on the other hand we consider the possible shear strength of rock masses, the same Mohr-

Coulomb equation automatically comes to most people’s minds. It is assumed that ‘c’ can again be 

added to ‘σn tan φ’. In this case there may be a genuine cohesive strength component due to the 

‘necessary’ failure of ‘intact bridges’, where joint sets do not ‘line-up’ as potential failure surfaces. 

However this time there is another type of problem. While the cohesion is no longer hypothetical but 

real, the problem is that it fails at much smaller strain than the mobilization of frictional strength 

along the newly formed fresh and rough fracture surfaces. These in turn may be stiffer than the lower 

strength (and possibly weathered) natural joints (i.e. those capable of shearing because of adverse 

orientations. There may aslo be clay-filled shear zones or faults, with their smaller-and-later response. 

 

Figure 34 The components of the shear strength of rock masses, as assembled in Barton, 1999. When 

considering the shear strength of rock masses with possible intact portions of rock along the potential 

failure surface(s) it must be realized that these four components (excluding rockfill) are unlikely to 
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resist shear failure at the same shear strain. A ‘cascading’ progressive mobilization is involved from 

the upper to the lower curve at successively increasing shear strain (assuming filled discontinuities are 

also present). 

A crude and non-conservative way to make allowance for the different components, and assume 

(when estimating by hand) that contributions can be added as if occurring at the same strain, but 

with the smallest-strain cohesion ignored, is illustrated in Table 1. With the aid of a computer one 

could mobilise the various components at their respective strains. How often do we see this done? 

Since the answer is clear we must conclude that it is time for change. 

Table 1 A crude (and probably non-conservative) way to account for three of the components illustrated in 
Figure 33. Cohesion is ignored (this is conservative) but the three remaining fracture, joint, and filled-
discontinuity components are imagined, for ease of hand calculation, to mobilize at the same strains. 

 

 

9 A BRIEF COMPARISON OF MOHR-COULOMB AND BARTON-BANDIS MODELLING 
 

Rock masses may range from almost intact, through well jointed, to heavily crushed, due to increased 

proximity to fault zones. The result is variable geometrical patterns resulting from several types of joint 

sets with their variable roughness and continuity. Notwithstanding an implied need for engineering 

rationalization, the assessment of strength for such complex media as rock masses cannot be approached 

on the basis of a single generic strength criterion. 
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The type, frequency and orientation of the jointing and faulting define the likely modes of deformation, 

and some indication of the likely ultimate failure mechanism. In significant volumes of rock there may be 

two or three classes of discontinuities (natural and stress-induced fracturing) which can become involved 

in the pre-peak and post-peak deformation and failure. Rock mechanics practitioners to date have 

generally adopted one of the following two approaches for the characterization and engineering study of 

jointed rock.  

- A discontinuum approach, in which the geologic structure is explicitly represented and in turn 

controls the modes of deformation and mechanisms of ultimate failure (prior to modelling of 

appropriate rock mass reinforcement). 

- A continuum approach, which involves a semi-empirical simulation of the rock mass, transforming 

the in situ (actual) discontinuous state into a hypothetical continuous medium, in which the 

weakening and softeninginfluence of jointing is allowed for implicitly 

Due to the complexity we must resort to numerical UDEC-BB or 3DEC simulations. A useful starting point, 

and a demonstration of the fundamental  differences between M-C and B-B can be gained by performing 

simulations of large scale biaxial and triaxial tests. These give a useful insight into mechanisms at failure, 

and comparisons of shear strength estimates based on the above non-linear strength criteria, with linear 

M-C criteria are quite revealing. Of course predictions from “global” continuum strength criteria (an 

example would be GSI-based H-B Hoek-Brown) are quite different to both. Contrasting B-B and M-C 

behaviour for an equally jointed ‘rock mass’ sample are shown in Figure 34. 

 

Figure 35  Contrasting stiffness and strength behaviour, assuming non-linear (BB – left block plot) and 

linear (MC – right block plot). Due to the non-linearity of BB simulations compared to the linear (or bi-

linear ‘ramping’) in the case of MC, significant block rotations are seen with BB which tend to be absent 

with MC. A comprehensive set of comparisons with numerous geometric and boundary conditions are 

given by Barton and Bandis (2018, in preparation).  

Such diverging approaches, coupled with the inherent complexity of jointed rock behaviour, have 

created unfortunate barriers that, to date, have prevented comprehensive and generally accepted 
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approaches to rock mechanics, as needed for solving rock engineering problems. Discontinuum and 

continuum mechanics approaches are applicable to specific rock mass conditions, and cannot be 

used interchangeably, as summarized below: 

- The continuum (implicit) approach is appropriate where the frequency and orientation of jointing 

are such that no preferential paths of stress-strain responses are present. Such conditions are 

present in an estimated <10% of rock masses. 

- The discontinuum (explicit) approach is appropriate when the geological structure controls 

anisotropy, deformation modes, and strength. Such conditions are applicable to the vast majority 

(> 90%) of rock masses. 

 

10 CONCLUSIONS 

 

1. The authors are aware of some 50 equations for evaluating JRC. While this should be considered 

gratifying, the great majority are rather complex descriptions of a topological nature, or linked to 

3D laser profilometric analysis. The simple performance of tilt tests seems mostly to have 

escaped those analyzing roughness and ‘improving’ JRC. 

2. This chapter addresses the recommended methods of describing and performing index tests of 

rock joints by means of the two basic parameters JRC and JCS suggested by Barton, 1973.  

3. Due to the considerable further work of the two authors (including that with Choubey and 

Bakhtar) and subsequent correction for block-size scale effects, mostly from Bandis, the methods 

of predicting non-linear joint behavior ( stiffness, strength, dilation, conductivity, each with 

deformation) have become known as the Barton-Bandis or BB model. We must thank Bandis for 

his unmatched contribution during too short a lifetime (1951-2016 †) 

4. At the end of this chapter we have shown the fundamental differences between linear (Mohr-

Coulomb, MC) and non-linear BB. The differences are worthy of attention. 
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